Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 346: 123658, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432343

RESUMO

The transmission of antibiotic resistance genes (ARGs) in pathogenic bacteria affects culture animal health, endangers food safety, and thus gravely threatens public health. However, information about the effect of disinfectants - triclosan (TCS) on ARGs dissemination of bacterial pathogens in aquatic animals is still limited. One Citrobacter freundii (C. freundii) strain harboring tet(X4)-resistant plasmid was isolated from farmed grass carp guts, and subsequently conjugative transfer frequency from C. freundii to Escherichia coli C600 (E. coli C600) was analyzed under different mating time, temperature, and ratio. The effect of different concentrations of TCS (0.02, 0.2, 2, 20, 200 and 2000 µg/L) on the conjugative transfer was detected. The optimum conditions for conjugative transfer were at 37 °C for 8h with mating ratio of 2:1 or 1:1 (C. freundii: E. coli C600). The conjugative transfer frequency was significantly promoted under TCS treatment and reached the maximum value under 2.00 µg/L TCS with 18.39 times that of the control group. Reactive oxygen species (ROS), superoxide dismutase (SOD) and catalase (CAT) activities, cell membrane permeability of C. freundii and E. coli C600 were obviously increased under TCS stress. Scanning electron microscope showed that the cell membrane surface of the conjugative strains was wrinkled and pitted, even broken at 2.00 µg/L TCS, while lysed or even ruptured at 200.00 µg/L TCS. In addition, TCS up-regulated expression levels of oxidative stress genes (katE, hemF, bcp, hemA, katG, ahpF, and ahpC) and cell membrane-related genes (fimC, bamE and ompA) of donor and recipient bacteria. Gene Ontology (GO) enrichment demonstrated significant changes in categories relevant to pilus, porin activity, transmembrane transporter activity, transferase activity, hydrolase activity, material transport and metabolism. Taken together, a tet(X4)-resistant plasmid could horizontal transmission among different pathogens, while TCS can promote the propagation of the resistant plasmid.


Assuntos
Triclosan , Animais , Tigeciclina/farmacologia , Triclosan/toxicidade , Escherichia coli , Citrobacter freundii/genética , Antibacterianos/toxicidade , Plasmídeos , Bactérias/genética , Testes de Sensibilidade Microbiana
2.
Fish Shellfish Immunol ; 143: 109187, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923182

RESUMO

Hepcidin, as an antimicrobial peptide, is associated with innate immunity and is considered a potential antibiotic substitute. In the present study, the hepcidin gene from the cavefish - Onychostoma macrolepis was identified and analyzed. The recombinant hepcidin protein (rOmhepc) was obtained by prokaryotic expression, evaluating the inhibitory effect of 5 pathogenic bacteria in vitro. Sixty O. macrolepis injected with 100 µL A. hydrophila (1.5 × 108 CFU/mL) were randomly divided into the therapeutic group and infection group, and therapeutic group was injected with 100 µL rOmhepc (100 µg/mL) at 6 and 18 h. The survival rates of O. macrolepis and bacterial load in liver were measured at 24 h. The liver tissues were collected at 0, 6, 12, and 24 h after A. hydrophila injection for investigating expression levels of immune-related, inflammatory factor genes and FPN1 gene. The results demonstrated that the hepcidin CDS contained 279 bp and encoded 93 aa. Hepcidin protein has a hydrophobic surface formed by multiple hydrophobic residues (CCGCCYC), and the theoretical pI was 7.53. Omhepc gene was expressed at varying levels in tested tissues, with the liver showing the highest expression, followed by the spleen. The expression of hepcidin gene following A. hydrophila infection was up-regulated and then down-regulated in liver, and the highest expression level was found at 12 h with a 10.93-fold. The rOmhepc remarkably inhibited the growth of A. hydrophila, Staphylococcus aureus, and Streptococcus agalactiae, with inhibition rates reaching 69.67 %, 42.97 %, and 65.74 % at 100 µg/mL. The mortality rates of O. macrolepis and bacterial load in liver were significantly decreased in the therapeutic group than that of infection group (p < 0.05). After the rOmhepc therapeutic, interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were significantly down-regulated with 14.4-fold and 106.07-fold at 24 h. Furthermore, the expression of immune-related genes (C3, TNF-α, IFN-γ) and Ferroportin gene (FPN1) significantly decreased (p < 0.05). The integrated analyses indicated that the rOmhepc could significantly inhibit the growth of A. hydrophila both in vitro and in vivo, attenuating the over-expression of inflammatory factor, FPN1 and immune-related genes.


Assuntos
Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/fisiologia , Hepcidinas , Cyprinidae/metabolismo , Imunidade Inata/genética , Interleucina-6 , Proteínas Recombinantes , Ferro , Homeostase , Proteínas de Peixes/química
3.
Adv Sci (Weinh) ; 10(33): e2303759, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818787

RESUMO

Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits limited survival benefit for severe cases. Here a biodegradable tobramycin-loaded magnesium micromotor (Mg-Tob motor) is successfully developed as a potential hydrogen generator and active antibiotic deliverer for synergistic therapy of sepsis. The peritoneal fluid of septic mouse provides an applicable space for Mg-water reaction. Hydrogen generated sustainably and controllably from the motor interface propels the motion to achieve active drug delivery along with attenuating hyperinflammation. The developed Mg-Tob motor demonstrates efficient protection from anti-inflammatory and antibacterial activity both in vitro and in vivo. Importantly, it prevents multiple organ failure and significantly improves the survival rate up to 87.5% in a high-grade sepsis model with no survival, whereas only about half of mice survive with the individual therapies. This micromotor displays the superior therapeutic effect of synergistic hydrogen-chemical therapy against sepsis, thus holding great promise to be an innovative and translational drug delivery system to treat sepsis or other inflammation-related diseases in the near future.


Assuntos
Sepse , Tobramicina , Animais , Camundongos , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Antibacterianos , Sepse/tratamento farmacológico
4.
Aquat Toxicol ; 260: 106541, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172458

RESUMO

Global warming has increased the frequency of Microcystis aeruginosa blooms, leading to the deterioration of water quality and loss of biodiversity. Therefore, developing effective strategies for controlling M. aeruginosa blooms has become an important research topic. Plant extracts, 4­tert-butylpyrocatechol (TBC) and tea polyphenol (TP) are commonly used for water purification and to increase fish immunity, which have great potential to inhibit cyanobacterial blooms. The inhibitory effects of TBC and TP on M. aeruginosa were investigated in terms of growth characteristics, cell membrane morphology, physiological, photosynthetic activities, and antioxidant enzymes activities. The results showed that TBC and TP inhibited the growth of M. aeruginosa by decreasing the chlorophyll fluorescence transients or increasing the antioxidant enzymes activities of M. aeruginosa. TBC damaged the cell morphology of M. aeruginosa, reduced extracellular polysaccharides and protein contents, and up-regulated the antioxidant activity-related gene (sod and gsh) expressions of M. aeruginosa. TP significantly decreased the photosynthetic pigment content, influenced the phycobiliprotein content, and strongly down-regulated the photosynthesis-related gene (psbA, psaB, and rbcL) relative expressions of M. aeruginosa. TBC caused significant oxidative stress, dysfunction of physiological metabolic processes, and damaged crucial biomacromolecules (e.g., lipids, proteins and polysaccharides), prompted the loss of cell integrity, ultimately leading to the death of M. aeruginosa. However, TP depressed photosynthetic activities and consequently inhibited the transfer of electrons, affected the electron transfer chain, decreased the photosynthetic efficiency, and eventually caused the death of M. aeruginosa cells. Our study showed the inhibitory effects and algicidal mechanisms of TBC and TP on M. aeruginosa, and provide a theoretical basis for restrain the overgrowth of M. aeruginosa.


Assuntos
Microcystis , Poluentes Químicos da Água , Antioxidantes/metabolismo , Microcystis/metabolismo , Poluentes Químicos da Água/toxicidade , Fotossíntese , Polissacarídeos/metabolismo , Chá/metabolismo
5.
Front Microbiol ; 12: 679805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248893

RESUMO

The excessive use of antibiotics speeds up the dissemination and aggregation of antibiotic resistance genes (ARGs) in the environment. The ARGs have been regarded as a contaminant of serious environmental threats on a global scale. The constant increase in aquaculture production has led to extensive use of antibiotics as a means to prevent and treat bacterial infections; there is a universal concern about the environmental risk of ARGs in the aquaculture environment. In this study, a survey was conducted to evaluate the abundance and distributions of 10 ARGs, bacterial community, and environmental factors in sediment samples from aquatic farms distributed in Anhui (AP1, AP2, and AP3), Fujian (FP1, FP2, and FP3), Guangxi (GP1, GP2, and GP3), Hainan (HP1, HP2, and HP3), and Shaanxi (SP1, SP2, and SP3) Province in China. The results showed that the relative abundance of total ARGs was higher in AP1, AP2, AP3, FP3, GP3, HP1, HP2, and HP3 than that in FP1, FP2, GP1, GP2, SP1, SP2, and SP3. The sul1 and tetW genes of all sediment samples had the highest abundance. The class 1 integron (intl1) was detected in all samples, and the result of Pearson correlation analysis showed that the intl1 has a positive correlation with the sul1, sul2, sul3, bla OXA, qnrS, tetM, tetQ, and tetW genes. Correlation analysis of the bacterial community diversity and environmental factors showed that the Ca2+ concentration has a negative correlation with richness and diversity of the bacterial community in these samples. Of the identified bacterial community, Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidota were the predominant phyla in these samples. Redundancy analysis showed that environmental factors (TN, TP, Cl-, and Ca2+) have a positive correlation with the bacterial community (AP1, GP1, GP2, GP3, SP1, SP2, and SP3), and the abundance of ARGs (sul1, tetW, qnrS, and intl1) has a positive correlation with the bacterial community (AP2, AP3, HP1, HP2, and HP3). Based on the network analysis, the ARGs (sul1, sul2, bla CMY, bla OXA, qnrS, tetW, tetQ, tetM, and intl1) were found to co-occur with bacterial taxa from the phyla Chloroflexi, Euryarchaeota, Firmicutes, Halobacterota, and Proteobacteria. In conclusion, this study provides an important reference for understanding the environmental risk associated with aquaculture activities in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA